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  Introduction – where do we want to go?

  Containers & Ghosts 

  Container Checkpointing 

Overview
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Checkpointing in XtreemOS

 Kernel Checkpointer: saving states of nodes and Kerrighed clusters

 System Checkpointer: periodic incremental chkp. & garbage collection

 Grid Checkpointer: scalable hierarchical chkp., failure detection & recovery
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Checkpointing in Kerrighed

belongs to WP2.2 of XtreemOS

Kernel Checkpointer: saving state of a process
– shared memory: UDUS

– open files and network communication: IRISA

System Checkpointer: 
– WP2.1 code will be extended 

– a cluster appears as a single grid node

– LinuxSSI/Kerrighed manages periodic checkpointing, failure 
detection  and recovery of a cluster in interaction with the grid 
Checkpointer
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UDUS‘ research perspective

WP2.2: container-based checkpointing in Kerrighed
– simplified checkpointing of different resources

– ghosts for saving & restoring kernel states

– checkpointing strategies for large scale clusters

WP3.3: grid-level checkpointing & recovery strategies
– adaptive strategies (coordinated versus independent ones)

– hierarchical approaches for applications spanning 

multiple clusters (interaction of Kerrighed System 

Checkpointer and Grid Checkpointer)

– hetereogenous environments (mobile, PC, clusters)
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Containers 

Containers: for sharing data objects cluster wide
– transparent access to remote data

– MESI-like protocol for consistency

– building  block for Single System Image

Linkers
– Defines the type of objects to be managed by the linked 

container

– Interface between containers and host OS resources

– For memory, network streams, files, ...
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Ghosts

Ghosts: for process migration
– handle kernel data structures of a process

– dynamically interweaving containers for resources of a process
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Container Checkpointing

 coordinated checkpointing approach
(synchronize processes, start checkpointing, resume work)

 what can happen within synch phase (yellow bar) in Kerrighed?

– Case 1: change of ownership 
(grab page request, page eviction to a remote node)

– Case 2: swapping pages to local disk
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Container Locking
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Case 1: Change of ownership

 caused by:
– application unit B, stopped after application unit A 
– Message(s) in transfer

 risk: owner object can be left without saving it
– owner object is not sent immediately after grab to 

requesting node
– might be forgotten to save on requesting node ...

• ... if object arrival follows decision which data to be saved 
has already been made

=> consistency issue
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Case 2

 I/O operation required to retrieve objects from disk
during the checkpointing operation

Does not cause faults but a performance issue
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 solution: insert new state into state machine                 
 define that ownership changes and evictions must NOT be 

executed within new state – block requests
 approach: “An efficient and scalable approach for implementing 

fault-tolerance DSM architectures“       (Morin,Kermarrec, 
Banatre, Gefflaut)

• Extended Coherence Protocol (Precommit, Shared-CK, Inv-CK)

• recovery data in memory, use for computation

 PRO: solves case 1 and case 2                                                        
          new state ensures “undisturbed” synch phase                       
          if extended: use replica data for computation

 CON: implementation; performance overhead                                 
          state machine modification

Realising CP – Approach I
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Realising CP – Approach II A

 Idea: stop senders and wait until container event queue is empty

 avoid impact of container protocol actions on objects on the recipient 
side                                                                     

 wait until container event queue gets empty                                            
                                         

 PRO: no modification to state machine                                                    
                                  

 CON: at what time will queue be empty?                                                 
          not all processes, that could send container msg's can be            
       stopped, otherwise system halts                                                       
       => queue is not guaranteed to be empty



Kerrighed Summit, Paris, France, 2007

Realising CP – Approach II B

 solution: avoid impact of protocol actions on sender side                

 do not send protocol actions for certain containers                          
  

 realisation:
– stop processes using signals (SIGSTOP, SIGCONT)  

– wrapper for protocol actions – do not block all containers

– export objects

– create disk structure (page data & meta data for recovery)                   
  

 PRO: solves case 1 and case 2                                                        
          no modification of state machine  
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Conclusion

 Container code is complex

 Still a lot of work ahead


