
Kerrighed Summit, Paris, France, 2007

Container Checkpointing

John Mehnert-Spahn

University of Duesseldorf

Germany

Kerrighed Summit, Paris, France, 2007

 Introduction – where do we want to go?

 Containers & Ghosts

 Container Checkpointing

Overview

Kerrighed Summit, Paris, France, 2007

Checkpointing in XtreemOS

 Kernel Checkpointer: saving states of nodes and Kerrighed clusters

 System Checkpointer: periodic incremental chkp. & garbage collection

 Grid Checkpointer: scalable hierarchical chkp., failure detection & recovery

Kernel
Ckpter

Grid Checkpointer

System
Checkpointer

System
Checkpointer

Grid
Application

Application
Unit

Process

WP3.3

WP2.1

WP2.1 WP2.2

Kerrighed Summit, Paris, France, 2007

Checkpointing in Kerrighed

belongs to WP2.2 of XtreemOS

Kernel Checkpointer: saving state of a process
– shared memory: UDUS

– open files and network communication: IRISA

System Checkpointer:
– WP2.1 code will be extended

– a cluster appears as a single grid node

– LinuxSSI/Kerrighed manages periodic checkpointing, failure
detection and recovery of a cluster in interaction with the grid
Checkpointer

Kerrighed Summit, Paris, France, 2007

UDUS‘ research perspective

WP2.2: container-based checkpointing in Kerrighed
– simplified checkpointing of different resources

– ghosts for saving & restoring kernel states

– checkpointing strategies for large scale clusters

WP3.3: grid-level checkpointing & recovery strategies
– adaptive strategies (coordinated versus independent ones)

– hierarchical approaches for applications spanning

multiple clusters (interaction of Kerrighed System

Checkpointer and Grid Checkpointer)

– hetereogenous environments (mobile, PC, clusters)

Kerrighed Summit, Paris, France, 2007

Containers

Containers: for sharing data objects cluster wide
– transparent access to remote data

– MESI-like protocol for consistency

– building block for Single System Image

Linkers
– Defines the type of objects to be managed by the linked

container

– Interface between containers and host OS resources

– For memory, network streams, files, ...

Kerrighed Summit, Paris, France, 2007

Ghosts

Ghosts: for process migration
– handle kernel data structures of a process

– dynamically interweaving containers for resources of a process

task_struct

Mm

Mm_struct

mmap

Vm_area_struc
t

mmap_cache

File_struc
t

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct

Pid

task_struct

Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Pile

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Container

Container

Container

KerNet Pipe

KerNet Socket

Kerrighed Summit, Paris, France, 2007

Container Checkpointing

 coordinated checkpointing approach
(synchronize processes, start checkpointing, resume work)

 what can happen within synch phase (yellow bar) in Kerrighed?

– Case 1: change of ownership
(grab page request, page eviction to a remote node)

– Case 2: swapping pages to local disk

Kerrighed Summit, Paris, France, 2007

Container Locking

Kerrighed Summit, Paris, France, 2007

Case 1: Change of ownership

 caused by:
– application unit B, stopped after application unit A
– Message(s) in transfer

 risk: owner object can be left without saving it
– owner object is not sent immediately after grab to

requesting node
– might be forgotten to save on requesting node ...

• ... if object arrival follows decision which data to be saved
has already been made

=> consistency issue

Kerrighed Summit, Paris, France, 2007

Case 2

 I/O operation required to retrieve objects from disk
during the checkpointing operation

Does not cause faults but a performance issue

Kerrighed Summit, Paris, France, 2007

 solution: insert new state into state machine
 define that ownership changes and evictions must NOT be

executed within new state – block requests
 approach: “An efficient and scalable approach for implementing

fault-tolerance DSM architectures“ (Morin,Kermarrec,
Banatre, Gefflaut)

• Extended Coherence Protocol (Precommit, Shared-CK, Inv-CK)

• recovery data in memory, use for computation

 PRO: solves case 1 and case 2
 new state ensures “undisturbed” synch phase
 if extended: use replica data for computation

 CON: implementation; performance overhead
 state machine modification

Realising CP – Approach I

Kerrighed Summit, Paris, France, 2007

Realising CP – Approach II A

 Idea: stop senders and wait until container event queue is empty

 avoid impact of container protocol actions on objects on the recipient
side

 wait until container event queue gets empty

 PRO: no modification to state machine

 CON: at what time will queue be empty?
 not all processes, that could send container msg's can be
 stopped, otherwise system halts
 => queue is not guaranteed to be empty

Kerrighed Summit, Paris, France, 2007

Realising CP – Approach II B

 solution: avoid impact of protocol actions on sender side

 do not send protocol actions for certain containers

 realisation:
– stop processes using signals (SIGSTOP, SIGCONT)

– wrapper for protocol actions – do not block all containers

– export objects

– create disk structure (page data & meta data for recovery)

 PRO: solves case 1 and case 2
 no modification of state machine

Kerrighed Summit, Paris, France, 2007

Conclusion

 Container code is complex

 Still a lot of work ahead

