
www.kerlabs.com

Louis.Rilling@kerlabs.com

Process Management:
Current Status and Future Developments

www.kerlabs.com

Focus

Distributed
Services
Layer

Dynamic Stream

Container

Ghost

KerSocketKerPipe

HotPlug

KerNetDev

Service Manager

Communication Library

Tools

Synchro Proc

EPM

ProcFS

IPC

MM FS

Sched

Comm
Layer

Basic
Blocks

02/05/07 www.kerlabs.com 3

Outline

Migration, Distant fork, Checkpoint (EPM)

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 4

Outline

Migration, Distant fork, Checkpoint (EPM)

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 5

Outline

Migration, Distant fork, Checkpoint (EPM)

What is working?

Making limitations safe

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 6

Outline

Migration, Distant fork, Checkpoint (EPM)

What is working?

Making limitations safe

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 7

Clone Flags (until Linux 2.6.18)

CLONE_VM

CLONE_FS

CLONE_FILES

CLONE_SIGHAND

CLONE_PTRACE

CLONE_VFORK

CLONE_PARENT

CLONE_THREAD

CLONE_SYSVSEM

CLONE_SETTLS

CLONE_PARENT_SETTID

CLONE_DETACHED

CLONE_CHILD_CLEARTID

CLONE_UNTRACED

CLONE_CHILD_SETTID

CLONE_STOPPED

Share VM (same mm) with caller

Share fs info (same fs) with caller

Share open files (same files) with caller

Share signal handlers and ignored signals (same sighand) with caller

Let tracing continue on the clone too

Caller wants the clone to wake it up on mm_release (exit or exec)

Clone has same parent (real_parent) as the caller

Same thread group as caller
(tgid, signal, sighand, real_parent, group_leader, process_keyring)

New namespace group

Share system V SEM_UNDO semantics with caller

Create a new TLS for the clone

Set clone PID in the caller

Clear the PID in the clone VM on mm_release (exit or exec)

Unused, ignored

Tracing process won't force ptrace on this clone

Set clone PID in the clone

Start in stopped state

CLONE_NEWNS

02/05/07 www.kerlabs.com 8

What is Working?

Migration

Works for sequential processes

Nothing shared with another task, except file descriptors initially
(POSIX semantics of fork)

Signals may be lost during migration

To be fixed shortly

Needs testing with Linux Test Project

Distant fork

OK with clone flags CLONE_CHILD_{SETTID, CLEARTID}
(needed by all fork in recent GNU libc)

Not used if any other clone flag specified

CLONE_PARENT and CLONE_PARENT_SETTID supported very soon

All threads of a thread group remain on a same node

Under heavy test with Linux Test Project

02/05/07 www.kerlabs.com 9

Checkpointing?

Still not working

Who tried to make it work?

Roadmap (sequential processes only, no communication)

Alpha version shortly (february, march)

No pid reservation: restart may fail if pid is reused!

Beta version during the summer

PID reservation as long as checkpoints remain valid

Robust in november 2007

02/05/07 www.kerlabs.com 10

Checkpointing: What is Needed?

Container support for checkpointing would be great :-)

IO linker functions already do a similar job...

Persistent storage for reserved PIDs

Security?

File system support (not for november 2007)

File versioning

Stable storage

Checkpoints

Set of reserved PIDs

Suggestions?

02/05/07 www.kerlabs.com 11

Outline

Migration, Distant fork, Checkpoint (EPM)

What is working?

Making limitations safe

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 12

Making Limitations Safe

Clone flags easy to check at task creation, but
after?

Ex: disable migration of a process whose parent
does not have a children ctnr object

Ex: disable migration of a process being ptraced

2 generic mechanisms

krg_cap_unavailable* capability arrays

krg_action_* functions family

02/05/07 www.kerlabs.com 13

krg_cap_unavailable Capability Array

One array per task

Inherited at fork

One counter for each capability

Ex: # of inheritable objects used that prevent from using cap

sys_open()
{

...
if (... /* special file */)

/* Disable migration since it would break access to the file */
atomic_inc(¤t->krg_cap_unavailable[CAP_CAN_MIGRATE]);

...
}
sys_close()
{

...
if (... /* special file */)

/* Closing the special file does not prevent migration anymore */
atomic_dec(¤t->krg_cap_unavailable[CAP_CAN_MIGRATE]);

}

02/05/07 www.kerlabs.com 14

krg_cap_unavailable_private Capability
Array

Similar to krg_cap_unvailable, but not inherited at fork

Ex: giving system ctnr objects to processes is a per process
decision

copy_process()
{

struct task_struct *p; /* New task */
...
if (!p->task_ctnr)

/* Disable parent migration since p could not notify it at exit */
atomic_inc(&p->parent->

krg_cap_unavailable_private[CAP_CAN_MIGRATE]);
...
if (!p->parent->children_ctnr)

/* Disable migration since p could not notify parent at exit */
atomic_inc(&p->krg_cap_unavailable_private[CAP_CAN_MIGRATE]);

...
if (!p->children_ctnr)

/* Disable distant fork since child could not notify p at exit */
atomic_inc(&p->krg_cap_unavailable_private[CAP_DISTANT_FORK]);

...
}

02/05/07 www.kerlabs.com 15

krg_action_* Family
(built on top of krg_cap_unvailable)

Non-blocking, can be nested

Result != 0 means “Abort or do something else!”

#include <epm/action.h>

typedef enum {
EPM_NO_ACTION,
EPM_MIGRATE,
EPM_REMOTE_CLONE,
EPM_CHECKPOINT,
EPM_ACTION_MAX /* Always in last position */

} krg_epm_action_t;

/* Disable action, if not one already in progress */
int krg_action_disable(struct task_struct *task, krg_epm_action_t action);
/* Re-enable action */
int krg_action_enable(struct task_struct *task, krg_epm_action_t action);

/* Start action if not disabled */
int krg_action_start(struct task_struct *task, krg_epm_action_t action);
/* Notify action end */
int krg_action_stop(struct task_struct *task, krg_epm_action_t action);

02/05/07 www.kerlabs.com 16

Outline

Migration, Distant fork, Checkpoint (EPM)

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 17

System Containers: Tasks

Objects are facultative for any task, but EPM actions on a task
need the task being attached to all containers

Not created for local PIDs and kernel-created kernel threads

PID container

Object <-> PID, lazy creation

PID allocation and recycling

May provide PID location in the future

Implementation may change

Task container

Object <-> PID, facultative

Share fields of a task_struct

Remote child reaping

PID Location (to be transferred elsewhere)

02/05/07 www.kerlabs.com 18

System Containers: Signals

signal_struct container

Object <-> TGID, facultative, depends on Task ctnr objects

Share a signal_struct

Provide parent with process resource usage at child's exit

Will allow distributed threads to share signals

sighand_struct container

Object <-> custom unique ID, facultative, depends on Task
ctnr objects

Share signal handlers

Will allow distributed tasks to share signal handlers

02/05/07 www.kerlabs.com 19

System Containers: Children Container

Object <-> TGID, facultative, depends on Task ctnr objects

Reparent children to remaining threads of a thread group

Know who is parent without making exit unscalable

Children list of a thread group rather than one for each thread

parent, real_parent, and real_parent_tgid fields of task
ctnr objects need not being always up to date

/* Lock children ctnr object of parent, and get up to date real parent TGID */
/* Result == NULL => no need to unlock */
/* Must be used on a live task (not reaped yet) */
struct children_ctnr_object *kh_parent_children_writelock(

struct task_struct *child, pid_t *real_parent_tgid);

/* Can be used on a dead task (real_parent_tgid will point to 0) */
struct children_ctnr_object *kh_parent_children_readlock(

struct task_struct *child, pid_t *real_parent_tgid);

void kh_children_unlock(pid_t tgid);

02/05/07 www.kerlabs.com 20

Future System Containers

Pgrp container

Object <-> PGID (subset of TGIDs having existed so far)

Know which nodes a process group spans

POSIX compliant job control

Detect orphaned process groups and send them SIGHUP+SIGCONT if
this results from a process death

Support syscall setpgid

Thread group container

Object <-> TGID

Know the PIDs of all threads in a distributed thread group

Ease reparenting of children when a thread exits

Support wait syscalls family with distributed thread groups

user_struct container, group_info container

02/05/07 www.kerlabs.com 21

Outline

Migration, Distant fork, Checkpoint (EPM)

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 22

Global Scheduler Architecture

Scheduling policy X Scheduling policy Y

Filter

Probe A1

Filter

...

Filter

...

Probe B

Filter

Filter

...

Filter

Filter

...

Filter

Probe A2

Filter

...

Filter

Scheduling policy Y

Filter

...

Filter

Probe A2

Filter

...

Filter

Probe B

Node 1 Node 2

Process group cProcess group bProcess group a

02/05/07 www.kerlabs.com 23

Dynamic Configuration

Configfs

Quoting Linux documentation:

“configfs is a ram-based filesystem that provides the converse
of sysfs's functionality. Where sysfs is a filesystem-based view
of kernel objects, configfs is a filesystem-based manager of
kernel objects, or config_items. “

mkdir -> create a config_item

read/write -> see/set config_item attributes

symlink -> aggregate config_items from different subtrees

Map scheduler component connections to configfs operations

Background work...

02/05/07 www.kerlabs.com 24

Outline

Migration, Distant fork, Checkpoint (EPM)

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 25

Distributed Linux

Consistent time management

Wallclocks, jiffies

Distributed threads

Distant fork must support CLONE_THREAD, CLONE_VM,
CLONE_SIGHAND, CLONE_SETTLS, CLONE_FILES, CLONE_FS,
CLONE_SYSVSEM

Remote ptrace

Manage parent != real parent, one or both remote

Access to the VM of a remote task

02/05/07 www.kerlabs.com 26

Enhancements to Kerrighed

Application fault tolerance

Parallel checkpointing/restart

High availability for applications

User-level API to customize / optimize fault tolerance

Multi-localized tasks

Improve SSI performance by keeping operations local

Init, already in some way

Orphaned children reaping remains local as much as possible

Servers

apache, inetd, nscd

02/05/07 www.kerlabs.com 27

Outline

Migration, Distant fork, Checkpoint (EPM)

System containers

Global scheduler

Directions to investigate, but when?

Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 28

Latest Linux 2.6

Probably Linux 2.6.20

Namespaces (vservers)

PID allocation, IPC, ...

New clone flags

CLONE_NEWUTS, CLONE_NEWIPC

unshare system call

Track changes in task_struct for EPM

New task flags

Find place for the 5 Kerrighed flags

PF_MIGRATING, PF_CHECKPOINTING, PF_DISTANT_FORKING, PF_AWAY,
PF_EXIT_NOTIFYING

New krg_flags field?

02/05/07 www.kerlabs.com 29

SMP / Multi-core

PROC “prepared”

EPM “half-prepared”

Real big issue is robust error handling

PROCFS to be rewritten(!)

SCHEDULER easy to port in its current status

Nothing tested yet!

My own philosophy

Better have deadlocks than hidden race conditions

02/05/07 www.kerlabs.com 30

64 bits (x86-64)

In process management, only a matter for EPM

Kerrighed signal

Arch-independent Kerrighed code that hooks in vanilla Linux
arch-dependent code

Export/import of Arch-specific task state

Already written, but did someone test?

32 bits compatibility for Kerrighed syscalls (ioctls)

02/05/07 www.kerlabs.com 31

Summarizing Timeline

Personal view

Who knows what can happen?

Kerrighed
summit ?nov 07summer 07spring 07

alpha
proc. mngt

beta
proc. mngt

distributed
threads

alpha
sequential
checkpoint

beta
sequential
checkpoint

robust
sequential
checkpoint

Linux 2.6.20 SMP x86-64

parallel
checkpoint

high-availability

robust
proc. mngt

with PID
reservation

alpha
scheduler

arch

beta
scheduler

arch

robust
scheduler

arch

multi-node
tasks

remote ptrace

consistent
time mngt

