Process Management:
Current Status and Future Developments

Louis.Rilling@kerlabs.com

___.

@ £  evvi ghed

[ |
%J Linux clusters made easy

-

www.kerlabs.com



T
‘ Sched

Distributed
IPC EPM Services

Layer
KerPipe KerSocket MM Synchro Proc ProcFS

Dynamic Stream Basic

Container Blocks

Service Manager HotPlug
Communication Library
KerNetDev

Tools

V\em;hed www.kerlabs.com KERLABS



Kemllphed

Migration, Distant fork, Checkpoint (EPM)
System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com B KERLABS



Kemllphed

Migration, Distant fork, Checkpoint (EPM)
System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 4 KERLABS



Kerﬁgked

Migration, Distant fork, Checkpoint (EPM)

What is working?
Making limitations safe

System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 5 KERLABS



Kerﬁgked

Migration, Distant fork, Checkpoint (EPM)

What is working?
Making limitations safe

System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 6 KERLABS



A Clone Flags (until Linux 2.6.18)

CLONE_VM

Share VM (same mm) with caller

CLONE_FS

Share fs info (same fs) with caller

CLONE_FILES

Share open files (same files) with caller

CLONE_SIGHAND

Share signal handlers and ignored signals (same sighand) with caller

CLONE PTRACE

Let tracing continue on the clone too

CLONE_VFORK

Caller wants the clone to wake it up on mm_release (exit or exec)

CLONE_PARENT

Clone has same parent (real parent) as the caller

CLONE_THREAD

Same thread group as caller
(tgid, signal, sighand, real parent, group leader, process _keyring)

CLONE_NEWNS

New namespace group

CLONE_SYSVSEM

Share system V SEM UNDO semantics with caller

CLONE_SETTLS

Create a new TLS for the clone

CLONE_PARENT_ SETTID

Set clone PID in the caller

CLONE CHILD CLEARTID

Clear the PID in the clone VM on mm_release (exit or exec)

CLONE DETACHED

Unused, ignored

CLONE_UNTRACED

Tracing process won't force ptrace on this clone

CLONE_CHILD SETTID

Set clone PID in the clone

CLONE_STOPPED

Start in stopped state

Kerﬁgked

02/05/07 www.kerlabs.com 7

KERLABSS



= Migration
Works for sequential processes

= Nothing shared with another task, except file descriptors initially
(POSIX semantics of fork)

Signals may be lost during migration
»= To be fixed shortly
Needs testing with Linux Test Project

» Distant fork

OK with clone flags CLONE_CHILD {SETTID, CLEARTID}
(needed by all fork in recent GNU libc)

Not used if any other clone flag specified
= CLONE_PARENT and CLONE_PARENT_SETTID supported very soon
= All threads of a thread group remain on a same node

Under heavy test with Linux Test Project

Kervighed 02/05/07 www.kerlabs.com 8 KERLABS



= Still not working
Who tried to make it work?
» Roadmap (sequential processes only, no communication)
Alpha version shortly (february, march)
= No pid reservation: restart may fail if pid is reused!
Beta version during the summer

= PID reservation as long as checkpoints remain valid
Robust in november 2007

Kervighed 02/05/07 www.kerlabs.com ' KERLABS



A Checkpointing: What is Needed?

= Container support for checkpointing would be great :-)
= 10 linker functions already do a similar job...

= Persistent storage for reserved PIDs
Security?
= File system support (not for november 2007)

File versioning

Stable storage

»= Checkpoints
= Set of reserved PIDs

= Suggestions?

Kervighed 02/05/07 www.kerlabs.com 10 KERLABS



Kerﬁgked

Migration, Distant fork, Checkpoint (EPM)

What is working?
Making limitations safe

System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 11 KERLABS



= Clone flags easy to check at task creation, but
after?

Ex: disable migration of a process whose parent
does not have a children ctnr object

Ex: disable migration of a process being ptraced
= 2 generic mechanisms

krg cap _unavailable* capability arrays
krg action * functions family

Kervighed 02/05/07 www.kerlabs.com 2 KERLABS



A krg cap_unavailable Capability Array

One array per task
Inherited at fork

One counter for each capability

Ex: # of inheritable objects used that prevent from using cap

sys_open()

{

if (... /* special file */)
/* Disable migration since it would break access to the file */
atomic_inc(&current->krg cap _unavailable[CAP_CAN_ MIGRATE]);

}
sys_close()
{
if (... /* special file */)
/* Closing the special file does not prevent migration anymore */
atomic_dec(&current->krg cap _unavailable[CAP_CAN_ MIGRATE]);
}

Kervighed 02/05/07 www.kerlabs.com 13 KERLABS



krg cap unavailable private Capability

Array

Similar to krg_cap unvailable, but not inherited at fork

Ex: giving system ctnr objects to processes is a per process

decision
copy_process()
{
struct task struct *p; /* New task */
i%.(!p->task_ctnr)
/* Disable parent migration since p could not notify it at exit */
atomic_inc(&p->parent->
krg _cap unavailable private[CAP_CAN MIGRATE]);
i%.(!p->parent->chi1dren_ctnr)
/* Disable migration since p could not notify parent at exit */
atomic_inc(&p->krg cap _unavailable private[CAP_CAN_MIGRATE]);
i%.(!p—>children_ctnr)
/* Disable distant fork since child could not notify p at exit */
atomic_inc(&p->krg cap unavailable private[CAP_DISTANT_ FORK]);
}

Kervighed 02/05/07 www.kerlabs.com 14 KERLABS



‘ ) krg _action * Family
‘ (built on top of krg _cap unvailable)

#include <epm/action.h>

typedef enum {

EPM_NO_ACTION,

EPM_MIGRATE,

EPM_REMOTE_CLONE,

EPM_CHECKPOINT,

EPM_ACTION_MAX /* Always in last position */
} krg epm action t;

/* Disable action, if not one already in progress */
int krg action disable(struct task struct *task, krg epm action t action);
/* Re-enable action */

int krg _action enable(struct task struct *task, krg epm action t action);

/* Start action if not disabled */

int krg action start(struct task struct *task, krg epm action t action);
/* Notify action end */
int krg action stop(struct task struct *task, krg epm action t action);

Non-blocking, can be nested

Result '= 0 means “Abort or do something else!”

Kervighed 02/05/07 www.kerlabs.com 15 KERLABS




Kemllphed

Migration, Distant fork, Checkpoint (EPM)
System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 16 KERLABS



A System Containers: Tasks

Objects are facultative for any task, but EPM actions on a task
need the task being attached to all containers

Not created for local PIDs and kernel-created kernel threads
PID container

Object <-> PID, lazy creation
PID allocation and recycling
May provide PID location in the future
Implementation may change
Task container

Object <-> PID, facultative
Share fields of a task struct

» Remote child reaping
PID Location (to be transferred elsewhere)

Kervighed 02/05/07 www.kerlabs.com 17 KERLABS



A System Containers: Signals

= signal struct container

Object <-> TGID, facultative, depends on Task ctnr objects
Share a signal struct

»= Provide parent with process resource usage at child's exit
= Will allow distributed threads to share signals

= sighand struct container

Object <-> custom unique ID, facultative, depends on Task
ctnr objects

Share signal handlers

= Will allow distributed tasks to share signal handlers

Kervighed 02/05/07 www.kerlabs.com 18 KERLABS



A System Containers: Children Container

Object <-> TGID, facultative, depends on Task ctnr objects
Reparent children to remaining threads of a thread group
Know who is parent without making exit unscalable

Children list of a thread group rather than one for each thread

parent, real parent, and real parent_tgid fields of task
ctnr objects need not being always up to date

/* Lock children ctnr object of parent, and get up to date real parent TGID */
/* Result == NULL => no need to unlock */
/* Must be used on a live task (not reaped yet) */
struct children ctnr object *kh _parent_children writelock(
struct task struct *child, pid t *real parent_tgid);

/* Can be used on a dead task (real parent_tgid will point to 0) */
struct children ctnr object *kh _parent_children_readlock(
struct task struct *child, pid t *real parent_tgid);

void kh_children_unlock(pid t tgid);

Kervighed 02/05/07 www.kerlabs.com 19 KERLABS



A Future System Containers

Pgrp container

Object <-> PGID (subset of TGIDs having existed so far)
Know which nodes a process group spans

POSIX compliant job control

» Detect orphaned process groups and send them SIGHUP+SIGCONT if
this results from a process death

Support syscall setpgid
Thread group container
Object <-> TGID
Know the PIDs of all threads in a distributed thread group
Ease reparenting of children when a thread exits
Support wait syscalls family with distributed thread groups
user struct container, group info container

Kervighed 02/05/07 www.kerlabs.com 20 KERLABSS



Kemllphed

Migration, Distant fork, Checkpoint (EPM)
System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 21 KERLABS



A Global Scheduler Architecture

Process group a

Filter @ Filter | Filter
AR AR
Filter @ Filter | Filter

e

Node 1

Filter

Process group b

A

Filter

Filter

A

02/05/07

Filter

www.kerlabs.com

Process group c

Filter

A

Filter

Node 2

KERLABSS

Filter

A

Filter

s




A Dynamic Configuration

Configfs

Quoting Linux documentation:

“configfs is a ram-based filesystem that provides the converse
of sysfs's functionality. Where sysfs is a filesystem-based view
of kernel objects, configfs is a filesystem-based manager of
kernel objects, or config items. “

mkdir -> create a config item

read/write -> see/set config item attributes

symlink -> aggregate config items from different subtrees
Map scheduler component connections to configfs operations

Background work...

Kervighed 02/05/07 www.kerlabs.com 23 KERLABS



Kemllphed

Migration, Distant fork, Checkpoint (EPM)
System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 24 KERLABS



A Distributed Linux

= Consistent time management

Wallclocks, jiffies
= Distributed threads

Distant fork must support CLONE THREAD, CLONE VM,
CLONE_SIGHAND, CLONE_SETTLS, CLONE_FILES, CLONE_FS,
CLONE_SYSVSEM

» Remote ptrace

Manage parent != real parent, one or both remote
Access to the VM of a remote task

V\emghed 02/05/07 www.kerlabs.com 25 KERLABS



A Enhancements to Kerrighed

= Application fault tolerance

Parallel checkpointing/restart
High availability for applications
User-level API to customize / optimize fault tolerance

= Multi-localized tasks

Improve SSI performance by keeping operations local

Init, already in some way
» Orphaned children reaping remains local as much as possible
Servers

»= apache, inetd, nscd

Kervighed 02/05/07 www.kerlabs.com 26 KERLABS



Kemllphed

Migration, Distant fork, Checkpoint (EPM)
System containers

Global scheduler

Directions to investigate, but when?
Porting issues

Summarizing timeline

02/05/07 www.kerlabs.com 27 KERLABS



A Latest Linux 2.6

= Probably Linux 2.6.20

= Namespaces (vservers)
PID allocation, IPC, ...
= New clone flags
CLONE_NEWUTS, CLONE_NEWIPC
= unshare system call
= Track changes in task struct for EPM

= New task flags

Find place for the 5 Kerrighed flags

= PF_MIGRATING, PF_CHECKPOINTING, PF_DISTANT_ FORKING, PF_AWAY,
PF_EXIT NOTIFYING

= New krg_flags field?

V\emghed 02/05/07 www.kerlabs.com 28 KERLABS



= PROC “prepared”
= EPM “half-prepared”

Real big issue is robust error handling
= PROCEFS to be rewritten(!)

= SCHEDULER easy to port in its current status

= Nothing tested yet!
= My own philosophy

Better have deadlocks than hidden race conditions

Kervighed 02/05/07 www.kerlabs.com 29 KERLABS



= |n process management, only a matter for EPM

= Kerrighed signal

Arch-independent Kerrighed code that hooks in vanilla Linux
arch-dependent code

= Export/import of Arch-specific task state
Already written, but did someone test?
= 32 bits compatibility for Kerrighed syscalls (ioctls)

Kervighed 02/05/07 www.kerlabs.com 30 KERLABS



» Personal view

= Who knows what can happen?

Kerrighed

summit spring 07 summer 07 nov 07 ?
— >
alpha beta robust distributed
proc. mngt proc. mngt proc. mngt threads
remote ptrace
alpha beta robust
sequential sequential sequential parallel
checkpoint checkpoint checkpoint checkpoint
with PID high-availability
reservation _
multi-node
alpha beta robust tasks
scheduler scheduler scheduler
arch arch arch  consistent
time mngt
Linux 2.6.20 SMP x86-64

Kervighed 02/05/07 www.kerlabs.com 31 KERLABS



